Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Front Vet Sci ; 11: 1380911, 2024.
Article in English | MEDLINE | ID: mdl-38706756

ABSTRACT

Due to the limited bioavailability of inorganic trace minerals, their utilization in poultry production has led to problems such as environmental contamination and inefficient resource utilization. It was investigated whether replacing inorganic trace minerals (ITM) with a blend of organic small peptide-chelated trace minerals (MIX) would improve production performance, selected biochemical parameters, antioxidant capacity, mineral deposition in liver, heart, and tibia, as well as mineral content in feces of broilers. A total of 432 healthy 21-day-old 817 broilers were randomly divided into 4 groups with 6 replicates per group and 18 chickens per replicate. The control group received a basal diet supplemented with 1,000 mg/kg of inorganic trace minerals as sulfate. The experimental groups received basal diets supplemented with 200, 400, and 600 mg/kg of mixed trace mineral elements (50% sulfate +50% small peptide-chelate) for a trial period of 30 days, divided into two stages: 21-35 days and 36-50 days. The results indicate that on the 50th day, compared with the 1,000 mg/kg ITM group, the levels of serum cholesterol, urea nitrogen, and malondialdehyde in the 200, 400, and 600 mg/kg MIX groups decreased (p < 0.01), while the levels of serum glutathione peroxidase in the 200, 400, and 600 mg/kg MIX groups increased (p < 0.05). Compared to the ITM group, the addition of organic small peptide chelated trace minerals mixed with inorganic trace minerals can reduce the levels of zinc and manganese in feces (p < 0.01). Furthermore, the iron content in the heart and tibia of the 600 mg/kg MIX group also significantly decreased (p < 0.05). There were no differences in growth performance and slaughter performance among the groups (p > 0.05). This study shows that replacing inorganic minerals with low-dose MIX (200, 400, and 600 mg/kg) can reduce the levels of zinc and manganese in feces, with no negative impact on growth and slaughter performance.

2.
Water Res ; 256: 121628, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677035

ABSTRACT

Microplastics (MPs) and antibiotics co-occur widely in the environment and pose combined risk to microbial communities. The present study investigated the effects of erythromycin on biofilm formation and resistance mutation of a model bacterium, E. coli, on the surface of pristine and UV-aged polystyrene (PS) MPs sized 1-2 mm. The properties of UV-aged PS were significantly altered compared to pristine PS, with notable increases in specific surface area, carbonyl index, hydrophilicity, and hydroxyl radical content. Importantly, the adsorption capacity of UV-aged PS towards erythromycin was approximately 8-fold higher than that of pristine PS. Biofilms colonizing on UV-aged PS had a greater cell count (5.6 × 108 CFU mg-1) and a higher frequency of resistance mutation (1.0 × 10-7) than those on pristine PS (1.4 × 108 CFU mg-1 and 1.4 × 10-8, respectively). Moreover, erythromycin at 0.1 and 1.0 mg L-1 significantly (p < 0.05) promoted the formation and resistance mutation of biofilm on both pristine and UV-aged PS. DNA sequencing results confirmed that the biofilm resistance was attributed to point mutations in rpoB segment of the bacterial genome. qPCR results demonstrated that both UV aging and erythromycin repressed the expression levels of a global regulator rpoS in biofilm bacteria, as well as two DNA mismatch repair genes mutS and uvrD, which was likely to contribute to increased resistance mutation frequency.


Subject(s)
Biofilms , Erythromycin , Escherichia coli , Microplastics , Mutation , Polystyrenes , Biofilms/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Erythromycin/pharmacology , Microplastics/toxicity , Anti-Bacterial Agents/pharmacology , Ultraviolet Rays , Drug Resistance, Bacterial/genetics
3.
Nat Commun ; 15(1): 1235, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336996

ABSTRACT

Hemiacetal compounds are valuable building blocks in synthetic chemistry, but their enzymatic synthesis is limited and often hindered by the instability of hemiacetals in aqueous environments. Here, we show that this challenge can be addressed through reaction engineering by using immobilized peroxygenase from Agrocybe aegerita (AaeUPO) under neat reaction conditions, which allows for the selective C-H bond oxyfunctionalization of environmentally significant cyclic ethers to cyclic hemiacetals. A wide range of chiral cyclic hemiacetal products are prepared in >99% enantiomeric excess and 95170 turnover numbers of AaeUPO. Furthermore, by changing the reaction medium from pure organic solvent to alkaline aqueous conditions, cyclic hemiacetals are in situ transformed into lactones. Lactams are obtained under the applied conditions, albeit with low enzyme activity. These findings showcase the synthetic potential of AaeUPO and offer a practical enzymatic approach to produce chiral cyclic hemiacetals through C-H oxyfunctionalization under mild conditions.

4.
Int J Biol Macromol ; 264(Pt 1): 130464, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423417

ABSTRACT

In current study, curcumin-loaded bioactive nanocomplexes (Cur NCs) (2 %, 5 %, 8 %, and 11 %) were used to prepare corn starch (CS)-based composite films (CS-Cur NCs). Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy revealed that Cur NCs were uniformly dispersed in the polymer matrix via physical interaction. Moreover, the mechanical, gas barrier, hydrophobicity, optical, and thermal properties and the antioxidant activity of composite films were potentially improved with the addition of Cur NCs. Subsequently, CS-based film with 11 % Cur NCs exhibited high antioxidant activity (the scavenging rates of DPPH and ABTS are 50.07 % ± 0.82 % and 65.26 % ± 1.60 %, respectively) and was used for packaging blueberries. Compared with the control, the CS-Cur NCs packaging treatment effectively improved the appearance and nutrition of blueberries, and maintained the high activity of several antioxidant enzymes. Furthermore, CS-Cur NCs packaging treatment significantly improved the ascorbic acid (AsA) and glutathione (GSH) levels, thus regulating the AsA-GSH cycle system and suppressing the accumulation of reactive oxygen species (ROS). In summary, the CS-Cur NCs packaging could effectively conserve the postharvest quality of blueberries by improving antioxidant enzyme activity and suppressing excessive accumulation of ROS, which contributes to the development of bioactive packaging and provides novel insights into the preservation of blueberries. This work demonstrates that the development of active packaging is promising to absorb the oxidative radicals from food, and protect the food from inherent and external factors, thus enhancing the quality, security, and shelf-life of the food during storage.


Subject(s)
Blueberry Plants , Curcumin , Antioxidants/pharmacology , Antioxidants/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Food Packaging/methods , Reactive Oxygen Species , Ascorbic Acid , Glutathione
5.
J Vis Exp ; (204)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38372350

ABSTRACT

The separation and analysis of the desired chemical components are important subjects for the fundamental research of traditional Chinese medicine (TCM). Ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) has gradually become a leading technology for the identification of TCM ingredients. Gynura bicolor DC. (BFH), a perennial stemless herb used for medicine and food in China has medicinal effects such as clearing heat, moistening the lung, relieving cough, dispersing stasis, and relieving swelling. Polyphenols and flavonoids contain numerous isomers, which hinder the identification of the complex compounds in BFH. This paper presents a systematic protocol for studying chemical constituents of BFH based on solvent extraction and integrated data via UPLC-Q-TOF-MS. The method described here includes systematic protocols for sample pretreatment, MS calibration, MS acquisition, data processing, and analysis of results. Sample pretreatment includes collection, cleaning, drying, crushing, and extraction. MS calibration consists of multipoint and single-point correction. Data processing includes data importing, method establishment, analysis processing, and result presentation. Representative results of the typical fragmentation pattern of phenolic acids, esters, and glycosides in Gynura bicolor DC. (BFH) are presented in this paper. In addition, organic solvent selection, extraction, data integration, collision energy selection, and method improvement are discussed in detail. This universal protocol can be widely used to identify complex compounds in TCM.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Medicine, Chinese Traditional , Glycosides/analysis , Glycosides/chemistry , Chromatography, High Pressure Liquid/methods , Solvents
6.
Environ Sci Technol ; 58(6): 2662-2671, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38311984

ABSTRACT

The exposure of aquatic organisms to pollutants often occurs concomitantly with salinity fluctuations. Here, we reported the effects of erythromycin (0.250, 7.21, and 1030 µg/L) on marine invertebrate N. succinea and its intestinal microbiome under varying salinity levels (5‰, 15‰, and 30‰). The salinity elicited significant effects on the growth and intestinal microbiome of N. succinea. The susceptibility of the intestinal microbiome to erythromycin increased by 8.7- and 6.2-fold at salinities of 15‰ and 30‰, respectively, compared with that at 5‰ salinity. Erythromycin caused oxidative stress and histological changes in N. succinea intestines, and inhibited N. succinea growth in a concentration-dependent manner under 30‰ salinity with a maximum inhibition of 25%. At the intestinal microbial level, erythromycin enhanced the total cell counts at 5‰ salinity but reduced them at 15‰ salinity. Under all tested salinities, erythromycin diminished the antibiotic susceptibility of the intestinal microbiome. Two-way ANOVA revealed significant interactive effects (p < 0.05) between salinity and erythromycin on various parameters, including antibiotic susceptibility and intestinal microbial diversity. The present findings demonstrated the significant role of salinity in modulating the impacts of erythromycin, emphasizing the necessity to incorporate salinity fluctuations into environmental risk assessments.


Subject(s)
Gastrointestinal Microbiome , Salinity , Erythromycin/pharmacology , Aquatic Organisms , Anti-Bacterial Agents/pharmacology
7.
Mol Neurobiol ; 61(1): 252-265, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37603153

ABSTRACT

The increased α-synuclein (α-syn)-dependent activation of CD4 T cells leads to the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN) in Parkinson's disease (PD). Astragaloside IV (AS-IV) protects DA neurons against neuroinflammation. The effects of AS-IV on CD4 T-cell-mediated immune responses in PD remain unknown. Rotenone (ROT) injected unilaterally into the substantia nigra pars compacta (SNc) of rats induced PD. AS-IV (20 mg/kg) was intraperitoneally injected once a day for 14 days. The limb hanging test and rotarod test were performed to evaluate the alteration of behavior at 4 and 6 weeks. Total gastrointestinal transit tests were performed at 4 weeks. Western blotting was used to detect the expression of proinflammatory cytokine proteins. Immunofluorescence staining was conducted to test the expression and localization of major histocompatibility complex class II (MHCII), cleaved caspase-1 and α-syn in astrocytes. Flow cytometry analysis, immunohistochemistry and immunofluorescence staining were used to measure the expression of CD4 T-cell subsets in the SN. The application of AS-IV protected against the loss of DA neurons and behavioral deficits in ROT-induced PD rat models. AS-IV administration inhibited the aggregation of α-syn in DA neurons and the expression of proinflammatory cytokines such as TNF-α, IL-18, IL-6 and IL-1ß. AS-IV decreased the activation of CD4 T cells and three CD4 T-cell subsets: Tfh, Treg and Th1. AS-IV interrupted the ROT-induced interaction between astrocytes and CD4 T cells and the colocalization of MHCII and α-syn in astrocytes. AS-IV inhibited the expression of α-syn in astrocytes and the colocalization of α-syn and cleaved caspase-1 in astrocytes. AS-IV prevents the loss of DA neurons in PD by inhibiting the activation of α-syn-specific CD4 T cells, which is regulated by MHCII-mediated antigen presentation in astrocytes.


Subject(s)
Parkinson Disease , Saponins , Triterpenes , alpha-Synuclein , Rats , Animals , alpha-Synuclein/metabolism , Rotenone/pharmacology , CD4-Positive T-Lymphocytes/metabolism , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Immunity , Caspases/metabolism
8.
Environ Sci Pollut Res Int ; 31(1): 1094-1113, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38032526

ABSTRACT

Gas explosions (GE) are a prevalent and widespread cause of traumatic brain injury (TBI) in coal miners. However, the impact and mechanism of curcumin on GE-induced TBI in rats remain unclear. In this study, we simulated GE-induced TBI in rats and administered curcumin orally at a dose of 100 mg/kg every other day for 7 days to modulate the gut microbiota in TBI rats. We employed 16S rRNA sequencing and LC-MS/MS metabolomic analysis to investigate changes in the intestinal flora and its metabolic profile. Additionally, we utilized ELISA, protein assays, and immunohistochemistry to assess neuroinflammatory signaling molecules for validation. In a rat TBI model, GE resulted in weight loss, pathological abnormalities, and cortical hemorrhage. Treatment with curcumin significantly mitigated histological abnormalities and microscopic mitochondrial structural changes in brain tissue. Furthermore, curcumin treatment markedly ameliorated GE-induced brain dysfunction by reducing the levels of several neuroinflammatory signaling molecules, including neuron-specific enolase, interleukin (IL)-1ß, IL-6, and cryptothermic protein 3. Notably, curcumin reshaped the gut microbiome by enhancing evenness, richness, and composition. Prevotella_9, Alloprevotella, Bacilli, Lactobacillales, Proteobacteria, and Gammaproteobacteria were identified as prominent members of the gut microbiota, increasing the linear discriminant analysis scores and specifically enhancing the abundance of bacteria involved in the nuclear factor (NF)-κB signaling pathway, such as Lachnospiraceae and Roseburia. Additionally, there were substantial alterations in serum metabolites associated with metabolic NF-κB signaling pathways in the model group. Curcumin administration reduced serum lipopolysaccharide levels and downregulated downstream Toll-like receptor (TLR)4/myeloid differentiation primary response 88 (MyD88)/NF-κB signaling. Furthermore, curcumin alleviated GE-induced TBI in rats by modulating the gut microbiota and its metabolites. Based on these protective effects, curcumin may exert its influence on the gut microbiota and the TLR4/MyD88/NF-κB signaling pathways to ameliorate GE-induced TBI.


Subject(s)
Brain Injuries, Traumatic , Curcumin , Gastrointestinal Microbiome , Rats , Animals , NF-kappa B/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Lipopolysaccharides , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Chromatography, Liquid , Explosions , RNA, Ribosomal, 16S , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology
9.
Front Microbiol ; 14: 1280313, 2023.
Article in English | MEDLINE | ID: mdl-38149277

ABSTRACT

As an enteric virus, chicken astrovirus has been related to various kinds of diseases in chickens, including white chick syndrome, runting-stunting syndrome, severe kidney disease, urate deposits and visceral gout, generating economic losses in the poultry industry globally. The complete ORF2 gene of 31 CAstV isolates in six provinces of China during 2020-2022 was characterized and analyzed with the purpose of better understanding the molecular epidemiology and genetic diversity of CAstV field isolates. Phylogenetic analysis which was based on the complete ORF2 (capsid) amino acid sequence of 31 CAstV isolates and 57 reference strains indicated that 2 isolates belonged to subgroup Ai, 10 isolates belonged to subgroup Bi, 3 isolates belonged to subgroup Bii, 5 isolates belonged to subgroup Biii, 7 isolates belonged to subgroup Biv, 3 isolates belonged to subgroup Bv, and one isolate (JS202103) belonged to a new B subgroup. In addition, the novel CAstV strain JS202103 was successfully isolated in vitro, and its whole genome shared 76.9-94.3% identity with the 29 CAstV reference strains. JS202103 caused hatchability reduction, dead embryos, kidney disease and visceral gout in chicken embryos. Moreover, this is the also the initial study focusing on diverse CAstV strains including subgroups Biii, Biv, and Bv circulate in China. The current work contributes to improving our understanding of CAstV isolates in China, and it will also provide references for developing efficient measures to control this virus.

10.
Acta Biomater ; 172: 309-320, 2023 12.
Article in English | MEDLINE | ID: mdl-37778484

ABSTRACT

Here, we propose for the first time the evaluation of magnetosensitive clMagR/clCry4 as a magnetic resonance imaging (MRI) reporter gene that imparts sensitivity to endogenous contrast in eukaryotic organisms. Using a lentiviral vector, we introduced clMagR/clCry4 into C57BL/6 mice-derived bone marrow mesenchymal stem cells (mBMSCs), which could specifically bind with iron, significantly affected MRI transverse relaxation, and generated readily detectable contrast without adverse effects in vivo. Specifically, clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which cells recruit exogenous iron and convert these stores into an MRI-detectable contrast; this is not achievable with control cells. Additionally, Prussian blue staining was performed together with ultrathin cell slices to provide direct evidence of natural iron-bearing granules being detectable on MRI. Hence, it was inferred that the sensitivity of MRI detection should be correlated with clMagR/clCry4 and exogenous iron. Taken together, the clMagR/clCry4 has great potential as an MRI reporter gene. STATEMENT OF SIGNIFICANCE: In this study, we propose the evaluation of magnetosensitive clMagR/clCry4 as an MRI reporter gene, imparting detection sensitivity to eukaryotic mBMSCs for endogenous contrast. At this point, the clMagR and clCry4 were located within the cytoplasm and possibly influence each other. The clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which protein could specifically bind with iron and convert these stores into MRI-detectable contrast; this is not achieved by control cells. The viewpoint was speculated that the clMagR/clCry4 and exogenous iron were complementary to each other. Additionally, Prussian blue staining was performed together with TEM observations to provide direct evidence that the iron-bearing granules were sensitive to MRI.


Subject(s)
Magnetic Resonance Imaging , Mesenchymal Stem Cells , Mice , Animals , Mice, Inbred C57BL , Magnetic Resonance Imaging/methods , Contrast Media/pharmacology , Iron , Mesenchymal Stem Cells/metabolism
11.
JAMA Dermatol ; 159(12): 1399-1401, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37878279

ABSTRACT

This observational case series examines the diagnosis and treatment of 2 patients with systemic juvenile xanthogranuloma treated with alectinib.


Subject(s)
Lung Neoplasms , Xanthogranuloma, Juvenile , Humans , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases , Xanthogranuloma, Juvenile/diagnosis , Xanthogranuloma, Juvenile/drug therapy
12.
Adv Sci (Weinh) ; 10(34): e2304605, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37870171

ABSTRACT

Performing divergent C─H bond functionalization on molecules with multiple reaction sites is a significant challenge in organic chemistry. Biocatalytic oxyfunctionalization reactions of these compounds to the corresponding ketones/aldehydes are typically hindered by selectivity issues. To address these challenges, the catalytic performance of oxidoreductases is explored. The results show that combining the peroxygenase-catalyzed propargylic C─H bond oxidation with the Old Yellow Enzyme-catalyzed reduction of conjugated C─C triple bonds in one-pot enables the regio- and chemoselective oxyfunctionalization of sp3 C─H bonds that are distant from benzylic sites. This enzymatic approach yielded a variety of γ-keto arenes with diverse structural and electronic properties in yields of up to 99% and regioselectivity of 100%, which are difficult to achieve using other chemocatalysis and enzymes. By adjusting the C─C triple bond, the carbonyl group's position can be further tuned to yield ε-keto arenes. This enzymatic approach can be combined with other biocatalysts to establish new synthetic pathways for accessing various challenging divergent C─H bond functionalization reactions.


Subject(s)
Catalysis , Oxidation-Reduction
13.
Sci Adv ; 9(41): eadf3771, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824619

ABSTRACT

Quantifying neuron morphology and distribution at the whole-brain scale is essential to understand the structure and diversity of cell types. It is exceedingly challenging to reuse recent technologies of single-cell labeling and whole-brain imaging to study human brains. We propose adaptive cell tomography (ACTomography), a low-cost, high-throughput, and high-efficacy tomography approach, based on adaptive targeting of individual cells. We established a platform to inject dyes into cortical neurons in surgical tissues of 18 patients with brain tumors or other conditions and one donated fresh postmortem brain. We collected three-dimensional images of 1746 cortical neurons, of which 852 neurons were reconstructed to quantify local dendritic morphology, and mapped to standard atlases. In our data, human neurons are more diverse across brain regions than by subject age or gender. The strong stereotypy within cohorts of brain regions allows generating a statistical tensor field of neuron morphology to characterize anatomical modularity of a human brain.


Subject(s)
Brain Mapping , Neurons , Humans , Brain Mapping/methods , Brain/diagnostic imaging , Brain/pathology , Imaging, Three-Dimensional , Head
15.
Phys Med Biol ; 68(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37774717

ABSTRACT

Objective.Type-b aortic dissection (AD) is a life-threatening cardiovascular disease and the primary treatment is thoracic endovascular aortic repair (TEVAR). Due to the lack of a rapid and accurate segmentation technique, the patient-specific postoperative AD model is unavailable in clinical practice, resulting in impracticable 3D morphological and hemodynamic analyses during TEVAR assessment. This work aims to construct a deep learning-based segmentation framework for postoperative type-b AD.Approach.The segmentation is performed in a two-stage manner. A multi-class segmentation of the contrast-enhanced aorta, thrombus (TH), and branch vessels (BV) is achieved in the first stage based on the cropped image patches. True lumen (TL) and false lumen (FL) are extracted from a straightened image containing the entire aorta in the second stage. A global-local fusion learning mechanism is designed to improve the segmentation of TH and BR by compensating for the missing contextual features of the cropped images in the first stage.Results.The experiments are conducted on a multi-center dataset comprising 133 patients with 306 follow-up images. Our framework achieves the state-of-the-art dice similarity coefficient (DSC) of 0.962, 0.921, 0.811, and 0.884 for TL, FL, TH, and BV, respectively. The global-local fusion learning mechanism increases the DSC of TH and BV by 2.3% (p< 0.05) and 1.4% (p< 0.05), respectively, based on the baseline. Segmenting TH in stage 1 can achieve significantly better DSC for FL (0.921 ± 0.055 versus 0.857 ± 0.220,p< 0.01) and TH (0.811 ± 0.137 versus 0.797 ± 0.146,p< 0.05) than in stage 2. Our framework supports more accurate vascular volume quantifications compared with previous segmentation model, especially for the patients with enlarged TH+FL after TEVAR, and shows good generalizability to different hospital settings.Significance.Our framework can quickly provide accurate patient-specific AD models, supporting the clinical practice of 3D morphological and hemodynamic analyses for quantitative and more comprehensive patient-specific TEVAR assessments.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Blood Vessel Prosthesis Implantation , Deep Learning , Endovascular Procedures , Humans , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/surgery , Aortic Dissection/diagnostic imaging , Aortic Dissection/surgery , Retrospective Studies , Treatment Outcome
16.
Int Immunopharmacol ; 124(Pt A): 110852, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37657245

ABSTRACT

Multiple myeloma (MM) is a bone marrow resident hematological malignancy. T helper (Th) cells play an essential role in maladjustment of immune function and promotion of myeloma cell proliferation and survival, which has not been fully elucidated. Here, we compared transcriptome profiles of CD4+ T cells in bone marrow samples of 3 healthy individuals and 10 MM patients before and after treatment using single-cell RNA sequencing. CD4+ T cells were divided into 7 clusters. Imbalanced Th17-like cell differentiation was indicated in MM based on bioinformation analyses, which involved IL2-STAT5 pathways and transcription factors NKFB1, RELA, STAT3, and GTF2A2. Pseudotime trajectory analysis of CD4+ T cell clusters further uncovered the enhanced transition of Th17-like to regulatory T (Treg) cells in MM, which was featured by expression changes of PLAC8, NKFB1, RELA, STAT3, and STAT1 along with the developmental path. Reduced cell-cell interaction between MM cells and CD4+ naïve/recently activated naïve T cells via CD74-APP might lead to imbalanced Th17-like cell differentiation. Checkpoints via TIGIT-NECTIN3 and LGALS9-CD47 in Treg and MM cells were also identified. Our study reveals imbalanced differentiation pattern of Th17-like cells and the immunosuppressive profiles in connection with MM cells, which might help to shed light on CD4+ T cell function in MM.

17.
Langmuir ; 39(28): 9875-9884, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37417367

ABSTRACT

Multidrug-resistant (MDR) pathogens have been a growing threat to human health over the years. Antimicrobial peptides (AMPs) with broad-spectrum antibiotic activity, as a promising therapeutic candidate, have shown tremendous capability against MDR pathogens. To acquire novel AMPs with better efficacy, we should dig into the antimicrobial mechanism by which AMPs perform their functions. In this study, the interaction processes between three representative AMPs (maculatin 1.1-G15, cupiennin 1a, and aurein 1.2) and the model membrane dDPPG/DPPG bilayer were investigated via sum frequency generation (SFG) vibrational spectroscopy. Two interaction modes for the membrane-bound AMPs were differentiated, i.e., the loosely adsorbed one and the tightly adsorbed one. In the loosely adsorbed mode, AMPs are bound to the bilayer mainly by the electrostatic attraction between the positively charged residues of AMPs and the negatively charged head groups of the lipids. After the charged AMPs and lipids were neutralized by the counter ions, the desorption of AMPs from the membrane lipids happened, as evidenced by the disappearance of the SFG signals from membrane-bound AMPs. While in the tightly adsorbed mode, besides the charged attraction, AMPs are additionally inserted into the membrane lipids via the hydrophobic interaction. Even when the electrostatic attraction was neutralized by the counter ions, the hydrophobic interaction still led to the firm adsorption of AMPs onto the already-neutralized bilayer lipids, as evidenced by the presence of clear SFG signals from membrane-bound AMPs. We thus established a feasible protocol to expand the application of SFG, namely classifying the adsorption modes of AMPs. Such knowledge will surely promote the development and application of AMPs with high efficacy.


Subject(s)
Anti-Infective Agents , Lipid Bilayers , Humans , Lipid Bilayers/chemistry , Antimicrobial Peptides , Adsorption , Membrane Lipids
18.
J Cosmet Dermatol ; 22(12): 3369-3374, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37313653

ABSTRACT

INTRODUCTION: Infantile hepatic hemangioma (IHH) is a common liver tumor in infants and shares the same characteristics as cutaneous infantile hemangioma (IH). Propranolol is effective for symptomatic IHH. The clinical features between cutaneous IH and IHH, and treatment efficacy of IHH (smaller than 4 cm) is unclear. To evaluate the correlation of clinical features between cutaneous IH and IHH, as well as efficacy of systemic propranolol in the treatment of cutaneous IH combined with IHH. MATERIALS AND METHODS: The clinical data of infants with complicated cutaneous IH combined with IHH treated with systemic propranolol (1.5 ~ 2 mg/(kg d)) from January 2011 to October 2020 were retrospectively analyzed. RESULTS: Forty-five cases with IHH combined with complicated cutaneous IH were reviewed. Single cutaneous IH is more likely to be combined with focal IHH, cutaneous IH greater than 5, more likely to be combined with multiple IHH (Pearson = 0.546, p < 0.01). The mean age of focal and multiple IHH regression was 11.93 ± 14.42 months and 10.20 ± 9.15 months, respectively. CONCLUSIONS: The number of cutaneous IH were correlated with the number of IHH. There was no difference in the age of complete remission for focal and multiple IHH.


Subject(s)
Hemangioma , Liver Neoplasms , Skin Neoplasms , Infant , Humans , Child, Preschool , Propranolol/therapeutic use , Retrospective Studies , Hemangioma/complications , Hemangioma/drug therapy , Hemangioma/pathology , Treatment Outcome , Skin Neoplasms/complications , Skin Neoplasms/drug therapy , Liver Neoplasms/drug therapy
19.
Macromol Biosci ; 23(9): e2300049, 2023 09.
Article in English | MEDLINE | ID: mdl-37178331

ABSTRACT

Transdermal drug delivery system (TDDS) has attracted much attention in the pharmaceutical technology area. However, the current methods are difficult to ensure penetration efficiency, controllability, and safety in the dermis, so its widespread clinical use has been limited. This work proposes an ultrasound-controlled monodisperse lipid vesicles (U-CMLVs) hydrogel dressing, which combines with ultrasound to form TDDS. Using microfluidic technology, prepare size controllable U-CMLVs with high drug encapsulation efficiency and quantitative encapsulation of ultrasonic response materials, and even uniform mix them with hydrogel to prepare the required thickness of dressings. The high encapsulation efficiency can ensure sufficient dosage of the drugs and further realize the control of ultrasonic response through quantitative encapsulation of ultrasound-responsive materials. Using high frequency (5 MHz, 0.4 W cm-2 ) and low frequency (60 kHz, 1 W cm-2 ) ultrasound to control the movement and rupture of U-CMLVs, the contents not only penetrate the stratum corneum into the epidermis but also break through the bottleneck of penetration efficiency, and deep into the dermis. These findings provide the groundwork for deep, controllable, efficient, and safe drug delivery through TDDS and lay a foundation for further expanding its application.


Subject(s)
Hydrogels , Skin Absorption , Hydrogels/pharmacology , Hydrogels/metabolism , Microfluidics , Drug Delivery Systems , Bandages , Lipids , Skin/metabolism
20.
NPJ Biofilms Microbiomes ; 9(1): 19, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029135

ABSTRACT

Intermittent fasting (IF) is a promising paradigm for weight loss which has been shown to modulate the gut microbiota based on 16S rRNA gene amplicon sequencing. Here, 72 Chinese volunteers with a wide range of body mass index (BMI) participated in a three-week IF program during which an average loss of 3.67 kg body weight accompanied with improved clinical parameters was observed irrespective of initial anthropometric and gut microbiota status. Fecal samples were collected before and after the intervention and subjected to shotgun metagenomic sequencing. De novo assembly yielded 2934 metagenome-assembled genomes (MAGs). Profiling revealed significant enrichment of Parabacteroides distasonis and Bacteroides thetaiotaomicron after the intervention, with inverse correlations between their relative abundances and parameters related to obesity and atherosclerotic cardiovascular diseases (ASCVD). MAGs enriched after the intervention showed high richness and diversity of carbohydrate-active enzymes, with an increased relative abundances of genes related to succinate production and glutamate fermentation.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Intermittent Fasting , Obesity , Metagenome
SELECTION OF CITATIONS
SEARCH DETAIL
...